
SPRING 2025: MATH 590 EXAM 1 SOLUTIONS

Name:

Throughout V will denote a vector space over F = R or C. You must show all work to receive full credit.

(I) True-False. Write true or false next to each statement below. No explanation required. (3 points each)

(a) Any ten dimensional vector space can by spanned by thirteen vectors. True. One can simply add
redundant vectors to a basis.

(b) The set of 2× 2 matrices with trace equal to 5 form a subspace of M2×2(R). False. The sum of two
matrices with trace 5 would have trace 10.

(c) Any six vectors in R6 form a basis. False. Any six linearly independent vectors form a basis.

(d) If A =

(
a b
c d

)
and B =

(
a b
e f

)
, then |A+B| = |A|+ |B|. False.

∣∣∣∣ a b
c+ e d+ f

∣∣∣∣ = |A|+ |B|.

(e) Suppose V = Span{v1, v2, v3, v4} and a1v1 + a2v2 + a3v3 + a4v4 = 0⃗, with each ai ∈ F and a1 ̸= 0.
Then V = Span{v2, v3, v4}. True. Just rewrite v1 in terms of v2, v3, v4.

(II) Carefully and accurately state the indicated definition, proposition or theorem. (10 points each)

(a) State the Exchange Theorem and be sure define all terms used in your statement.

Solution. Exchange Theorem. Let w1, . . . , ws, u1, . . . , ur be vectors in V and set W := Span{w1, . . . , ws}.
Assume that u1, . . . , ur are linearly independent and belong to W . Then r ≤ s. Moreover, after re-indexing
the wi’s, we have W = Span{u1, . . . , ur, wr+1, . . . , ws}.
Span{w1, . . . , ws} means the set of all linear combinations of w1, . . . , ws and u1, . . . , ur being linearly inde-
pendent means that no uj belongs to the span of the set {u1, . . . , uj−1, uj+1, . . . , ur}.
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(b) State Cramer’s Rule for an n× n system of linear equations.

Solution. Cramer’s Rule. Suppose A is an n × n matrix over F and A ·


x1

x2

...
xn

 =


b1
b2
...
bn

 is a system of

linear equations such that |A| ̸= 0. Let Bi denote the matrix obtained from A by replacing its ith column

by


b1
b2
...
bn

. Then, for each 1 ≤ i ≤ n, xi =
|Bi|
|A| .

(c) For an n× n matrix over R, state four conditions equivalent to A being invertible.

Solution. The following statements are equivalent to the invertibility of A: |A| ≠ 0; the rows of A are linearly
independent; the columns of A are linearly independent; any system of linear equations with coefficient matrix
A has a unique solution.

(d) For an n× n matrix A, define the classical adjoint of A and state its relevance to the inverse of A, if A
is invertible.

Solution. For each 1 ≤ i ̸= j ≤ n, let Aij denote the (n− 1)× (n− 1) matrix obtained from A by deleting
its ith row and jth column. Let C denote the n × n matrix whose i, jth entry is (−1)i+j |Aij |. Then the
classical adjoint of A′ of A is Ct.

If A is invertible, then A−1 = 1
|A| ·A

′.
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Calculation Problems. (15 points each)

(a) Let P3(R) denote the vector space of polynomials having degree three or less. Set p1(x) = x3−2x2+2x−4
and p2(x) = 2x3 + 6x2 + 4x+ 1.

(i) Determine if p3(x) = 11x3 + 18x2 + 22x − 8 belongs to Span{p1(x), p2(x)}. If so, write p3(x) as a
linear combination of p1(x) and p2(x).

(ii) Extend the set {p1(x), p2(x)} to a basis for P3(R).

Solution. We identify p1(x), p2(x), p3(x) with the column vectors v1 =


1
−2
2
−4

, v2 =


2
6
4
1

, v3 =


11
18
22
−8

. To

determine if p3(x) is in Span{p1(x), p2(x)}, we determine if v3 ∈ Span{v1, v2}. For this we use Gaussian
elimination. 

1 2 11
−2 6 18
2 4 22
−4 1 −8

 EROs−→


1 2 11
0 10 40
0 0 0
0 9 36

 EROs−→


1 2 11
0 1 4
0 0 0
0 0 0

 ERO−→


1 0 3
0 1 4
0 0 0
0 0 0

 .

This shows v3 = 3v1 + 4v2, and therefore, p3(x) = 3 · p1(x) + 4 · p2(x).
To extend p1(x), p2(x) to a basis for P3(R), we first extend v1, v2 to a basis for R4. For this, we must find

v3, v4 so that the matrix whose columns are v1, v2, v3, v4 are linearly independent. We try v3 = e3 =


0
0
1
0


and v4 − e4 =


0
0
0
1

. Then,

∣∣∣∣∣∣∣∣
1 2 0 0
−2 6 0 0
2 4 1 0
−4 1 0 1

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣
1 2 0
−2 6 0
2 4 1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 1 2
−2 6

∣∣∣∣ = 10 ̸= 0.

Thus, v1, v2, v3, v4 is a basis for R4, so that if we take p3(x) = x and p4(x) = 1, p1(x), p2(x), p3(x), p4(x)
form a basis for P3(R).

Why did we try e3, e4? Note that the Gaussian elimination above shows that Span{v1, v2} = Span{e1, e2}
which suggests taking v3 = e3 and v4 = e4.
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(b) Set A =

4 0 −2
2 5 4
0 0 5

.

(i) Find the characteristic polynomial for A and the eignevalues of A.
(ii) For each eigenvalue, find a basis for the corresponding eigenspace.
(iii) Let P be the matrix whose column vectors are the basis elements written in the order in which you

found them. Find P−1.
(iv) Verify that P−1AP is a diagonal matrix whose entries are the eigenvalues of A.

Solution. For (i), expanding along the last row we get,

pA(x) =

∣∣∣∣∣∣
x− 4 0 2
−2 x− 5 −4
0 0 x− 5

∣∣∣∣∣∣ = (x− 5) · {(x− 4)(x− 5)},

so the eigenvalues of A are: 4, 5.

For (ii), E4 is the null space of

0 0 −2
2 1 4
0 0 1

 EROs−→

1 1
2 0

0 0 1
0 0 0

. The vector v1 =

−1
2
0

 is a basis for this

solution space, and hence a basis for E4.

E5 is the null space of the matrix

−1 0 −2
2 0 4
0 0 0

 EROs−→

1 0 2
0 0 0
0 0 0

. The null space of this latter matrix

has dimension two, and v2 =

0
1
0

, v3 =

 2
0
−1

 are independent vectors in this null space and hence form

a basis for E5.

For (iii), we take P =

−1 0 2
2 1 0
0 0 −1

. The usual gaussian elimination to find P−1 yields P−1 =

−1 0 −2
2 1 4
0 0 −1

.

For (iv)

P−1AP =

−1 0 −2
2 1 4
0 0 −1

·

4 0 −2
2 5 4
0 0 5

·

−1 0 2
2 1 0
0 0 −1

 =

−4 0 −8
10 5 20
0 0 −5

·

−1 0 2
2 1 0
0 0 −1

 =

4 0 0
0 5 0
0 0 5

 .

Proof Problem. Define elementary 2×2 matrices and use elementary matrices to prove that |AB| = |A|·|B|
for 2× 2 matrices A and B such that B is invertible. (15 points)

Solution. An elementary matrix is one obtained from the identity matrix by performing an elementary row
operation on the identity matrix; or obtained from the identity matrix by applying a row operation. From
our determinant rules, we have that if E is an elementary matrix, then |EA| = |E|·|A|. If B is invertible, then
there exist elementary matrices, E1, E2, E3, E4 (at most four, in the 2× 2 case) such that E4E3E2E1 = B.
Then

|BA| = |E4E3E2E1A| = |E1| · |E2| · |E3| · |E4| · |A| = |E4E3E2E1| · |A| = |B| · |A|.
Or Equivalently, using column operations such that F1, . . . , F4 = B.

|AB| = |AF1F2F3F4| = |A| · |F1| · |F2| · |F3| · |F4| = |A| · |F1F2F3F4| = |A| · |B|.

Optional Bonus Problems. Solutions to bonus problems must be essentially completely correct to receive
any credit. Use the back of this page if necessary.
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1. Let V be a finite dimensional vector space, and W1,W2 ⊆ V subspaces. Prove that

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Hint: Start with a basis for W1 ∩W2. (10 points)

Solution. Suppose u1, . . . , ur is a basis for W1 ∩ W2. Extend this to a basis u1, . . . , ur, w1, . . . , wt for W1

and a basis u1, . . . , uu, v1, . . . , vs for W2. Then dim(W1) = r + t and dim(W2) = r + s. If we show that
B := {u1, . . . , ur, w1, . . . , wt, v1, . . . , vs} is a basis for W1 +W2, then

dim(W1 +W2) = r + s+ t = (r + t) + (r + s)− r = dim(W1) + dim(W2)− dim(W1 ∩W2).

Suppose a ∈ W1 +W2. Then a = b+ c, for some a ∈ W1 and b ∈ W2. We can write

b = α1u1 + · · ·+ αrur + β1w1 + · · ·+ βtw1

c = γ1u1 + · · ·+ γrur + δ1v1 + · · ·+ δsvs

Adding we see that W1 +W2 is spanned by B.

Now suppose
α1u1 + · · ·+ αrur + β1w1 + · · ·+ βtwt + δ1v1 + · · ·+ δsvs = 0⃗. (∗)

Then, α1u1 + · · · + αrur + β1w1 + · · · + βtwt = −δ1v1 − · · · − δsvs, so this vector belongs to W1 ∩ W2.
Therefore, we may write −δ1v1 − · · · − δsvs = α′

1u1 + · · ·+ α′
rur. Substituting into (*) we get

(α1 − α′
1)u1 + · · ·+ (αr − α′

r)ur + β1w1 + · · ·+ βtwt = 0⃗.

Since u1, . . . , ur, w1, . . . , wt is a basis for W1, each βi = 0. Using this in (*), we have

α1u1 + · · ·+ αrur + δ1v1 + · · ·+ δsvs = 0⃗.

Since these latter vectors are a basis for W2, all αi, δj are 0, hence the set B is linearly independent, and
thus a basis for W1 +W2.

2. For W1,W2,W3 ⊆ V , we write V = W1 ⊕W2 ⊕W3, as a direct sum, if every element in V can be written
uniquely as a sum of elements from W1,W2,W3. Show that, in this case: (i) V = W1 +W2 +W3 and (ii)

Wi ∩ (Wj +Wk) = 0⃗, for 1 ≤ i ̸= j ̸= k ≤ 3. (10 points)

Solution. By assumption, every vector in V is a sum of vectors fromW1,W2,W2. Suppose v ∈ Wi∩(Wj+Wk).

Then v = u+ w, with u ∈ Wj and w ∈ Wk. Thus, (−v) + u+ w = 0⃗, with each u, v, w coming from one of

the given subspaces. On the other hand, 0⃗ = 0⃗ + 0⃗ + 0⃗, with 0⃗ ∈ W1, 0⃗ ∈ W2, 0⃗ ∈ W3. By uniqueness of
sums, v = 0⃗, u = 0⃗, w = 0⃗. In particular, v = 0⃗, showing Wi ∩ (Wj +Wk) = 0⃗.
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