SPRING 2025: MATH 590 EXAM 1 SOLUTIONS

Name:

Throughout V will denote a vector space over $F = \mathbb{R}$ or \mathbb{C} . You must show all work to receive full credit.

- (I) True-False. Write true or false next to each statement below. No explanation required. (3 points each)
 - (a) Any ten dimensional vector space can by spanned by thirteen vectors. True. One can simply add redundant vectors to a basis.
 - (b) The set of 2×2 matrices with trace equal to 5 form a subspace of $M_{2\times 2}(\mathbb{R})$. False. The sum of two matrices with trace 5 would have trace 10.
 - (c) Any six vectors in \mathbb{R}^6 form a basis. False. Any six *linearly independent* vectors form a basis.

(d) If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $B = \begin{pmatrix} a & b \\ e & f \end{pmatrix}$, then $|A + B| = |A| + |B|$. False. $\begin{vmatrix} a & b \\ c + e & d + f \end{vmatrix} = |A| + |B|$.

- (e) Suppose $V = \text{Span}\{v_1, v_2, v_3, v_4\}$ and $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = \vec{0}$, with each $a_i \in F$ and $a_1 \neq 0$. Then $V = \text{Span}\{v_2, v_3, v_4\}$. True. Just rewrite v_1 in terms of v_2, v_3, v_4 .
- (II) Carefully and accurately state the indicated definition, proposition or theorem. (10 points each)
- (a) State the Exchange Theorem and be sure define all terms used in your statement.

Solution. Exchange Theorem. Let $w_1, \ldots, w_s, u_1, \ldots, u_r$ be vectors in V and set $W := \text{Span}\{w_1, \ldots, w_s\}$. Assume that u_1, \ldots, u_r are linearly independent and belong to W. Then $r \leq s$. Moreover, after re-indexing the w_i 's, we have $W = \text{Span}\{u_1, \ldots, u_r, w_{r+1}, \ldots, w_s\}$.

Span $\{w_1, \ldots, w_s\}$ means the set of all linear combinations of w_1, \ldots, w_s and u_1, \ldots, u_r being linearly independent means that no u_j belongs to the span of the set $\{u_1, \ldots, u_{j-1}, u_{j+1}, \ldots, u_r\}$.

(b) State Cramer's Rule for an $n \times n$ system of linear equations.

Solution. Cramer's Rule. Suppose A is an $n \times n$ matrix over F and $A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ is a system of

linear equations such that $|A| \neq 0$. Let B_i denote the matrix obtained from A by replacing its *i*th column $\langle b_1 \rangle$

by
$$\begin{pmatrix} b_2 \\ \vdots \\ b_n \end{pmatrix}$$
. Then, for each $1 \le i \le n, x_i = \frac{|B_i|}{|A|}$.

(c) For an $n \times n$ matrix over \mathbb{R} , state four conditions equivalent to A being invertible.

Solution. The following statements are equivalent to the invertibility of A: $|A| \neq 0$; the rows of A are linearly independent; the columns of A are linearly independent; any system of linear equations with coefficient matrix A has a unique solution.

(d) For an $n \times n$ matrix A, define the classical adjoint of A and state its relevance to the inverse of A, if A is invertible.

Solution. For each $1 \leq i \neq j \leq n$, let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting its *i*th row and *j*th column. Let C denote the $n \times n$ matrix whose *i*, *j*th entry is $(-1)^{i+j}|A_{ij}|$. Then the classical adjoint of A' of A is C^t .

If A is invertible, then $A^{-1} = \frac{1}{|A|} \cdot A'$.

Calculation Problems. (15 points each)

(a) Let $P_3(\mathbb{R})$ denote the vector space of polynomials having degree three or less. Set $p_1(x) = x^3 - 2x^2 + 2x - 4$ and $p_2(x) = 2x^3 + 6x^2 + 4x + 1$.

- (i) Determine if $p_3(x) = 11x^3 + 18x^2 + 22x 8$ belongs to $\text{Span}\{p_1(x), p_2(x)\}$. If so, write $p_3(x)$ as a linear combination of $p_1(x)$ and $p_2(x)$.
- (ii) Extend the set $\{p_1(x), p_2(x)\}$ to a basis for $P_3(\mathbb{R})$.

Solution. We identify $p_1(x), p_2(x), p_3(x)$ with the column vectors $v_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \\ -4 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 6 \\ 4 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 11 \\ 18 \\ 22 \\ -8 \end{pmatrix}$. To

determine if $p_3(x)$ is in Span $\{p_1(x), p_2(x)\}$, we determine if $v_3 \in \text{Span}\{v_1, v_2\}$. For this we use Gaussian elimination.

$$\begin{pmatrix} 1 & 2 & | & 11 \\ -2 & 6 & | & 18 \\ 2 & 4 & 22 \\ -4 & 1 & | & -8 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 2 & | & 11 \\ 0 & 10 & | & 40 \\ 0 & 0 & 0 \\ 0 & 9 & | & 36 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 2 & | & 11 \\ 0 & 1 & | & 4 \\ 0 & 0 & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \\ 0 & 0 & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

This shows $v_3 = 3v_1 + 4v_2$, and therefore, $p_3(x) = 3 \cdot p_1(x) + 4 \cdot p_2(x)$.

To extend $p_1(x), p_2(x)$ to a basis for $P_3(\mathbb{R})$, we first extend v_1, v_2 to a basis for \mathbb{R}^4 . For this, we must find 0

 v_3, v_4 so that the matrix whose columns are v_1, v_2, v_3, v_4 are linearly independent. We try $v_3 = e_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

and
$$v_4 - e_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
. Then,
$$\begin{vmatrix} 1 & 2 & 0 & 0 \\ -2 & 6 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ -4 & 1 & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 2 & 0 \\ -2 & 6 & 0 \\ 2 & 4 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 2 \\ -2 & 6 \\ 2 & 4 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 2 \\ -2 & 6 \end{vmatrix} = 10 \neq 0.$$

Thus, v_1, v_2, v_3, v_4 is a basis for \mathbb{R}^4 , so that if we take $p_3(x) = x$ and $p_4(x) = 1$, $p_1(x), p_2(x), p_3(x), p_4(x)$ form a basis for $P_3(\mathbb{R})$.

Why did we try e_3, e_4 ? Note that the Gaussian elimination above shows that $\text{Span}\{v_1, v_2\} = \text{Span}\{e_1, e_2\}$ which suggests taking $v_3 = e_3$ and $v_4 = e_4$.

(b) Set
$$A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}$$
.

- (i) Find the characteristic polynomial for A and the eignevalues of A.
- (ii) For each eigenvalue, find a basis for the corresponding eigenspace.
- (iii) Let P be the matrix whose column vectors are the basis elements written in the order in which you found them. Find P^{-1} .
- (iv) Verify that $P^{-1}AP$ is a diagonal matrix whose entries are the eigenvalues of A.

Solution. For (i), expanding along the last row we get,

$$p_A(x) = \begin{vmatrix} x - 4 & 0 & 2 \\ -2 & x - 5 & -4 \\ 0 & 0 & x - 5 \end{vmatrix} = (x - 5) \cdot \{(x - 4)(x - 5)\},\$$

so the eigenvalues of A are: 4, 5.

For (ii), E_4 is the null space of $\begin{pmatrix} 0 & 0 & -2 \\ 2 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. The vector $v_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ is a basis for this solution space, and hence a basis for E_4 .

 $E_5 \text{ is the null space of the matrix} \begin{pmatrix} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ The null space of this latter matrix

has dimension two, and $v_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$ are independent vectors in this null space and hence form a basis for E_5 .

For (iii), we take $P = \begin{pmatrix} -1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}$. The usual gaussian elimination to find P^{-1} yields $P^{-1} = \begin{pmatrix} -1 & 0 & -2\\ 2 & 1 & 4\\ 0 & 0 & -1 \end{pmatrix}$.

For (iv)

$$P^{-1}AP = \begin{pmatrix} -1 & 0 & -2\\ 2 & 1 & 4\\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & -2\\ 2 & 5 & 4\\ 0 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -4 & 0 & -8\\ 10 & 5 & 20\\ 0 & 0 & -5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{pmatrix}.$$

Proof Problem. Define elementary 2×2 matrices and use elementary matrices to prove that $|AB| = |A| \cdot |B|$ for 2×2 matrices A and B such that B is invertible. (15 points)

Solution. An elementary matrix is one obtained from the identity matrix by performing an elementary row operation on the identity matrix; or obtained from the identity matrix by applying a row operation. From our determinant rules, we have that if E is an elementary matrix, then $|EA| = |E| \cdot |A|$. If B is invertible, then there exist elementary matrices, E_1, E_2, E_3, E_4 (at most four, in the 2×2 case) such that $E_4E_3E_2E_1 = B$. Then

$$|BA| = |E_4 E_3 E_2 E_1 A| = |E_1| \cdot |E_2| \cdot |E_3| \cdot |E_4| \cdot |A| = |E_4 E_3 E_2 E_1| \cdot |A| = |B| \cdot |A|.$$

Or Equivalently, using column operations such that $F_1, \ldots, F_4 = B$.

$$|AB| = |AF_1F_2F_3F_4| = |A| \cdot |F_1| \cdot |F_2| \cdot |F_3| \cdot |F_4| = |A| \cdot |F_1F_2F_3F_4| = |A| \cdot |B|.$$

Optional Bonus Problems. Solutions to bonus problems must be essentially completely correct to receive any credit. Use the back of this page if necessary.

1. Let V be a finite dimensional vector space, and $W_1, W_2 \subseteq V$ subspaces. Prove that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Hint: Start with a basis for $W_1 \cap W_2$. (10 points)

Solution. Suppose u_1, \ldots, u_r is a basis for $W_1 \cap W_2$. Extend this to a basis $u_1, \ldots, u_r, w_1, \ldots, w_t$ for W_1 and a basis $u_1, \ldots, u_u, v_1, \ldots, v_s$ for W_2 . Then $\dim(W_1) = r + t$ and $\dim(W_2) = r + s$. If we show that $B := \{u_1, \ldots, u_r, w_1, \ldots, w_t, v_1, \ldots, v_s\}$ is a basis for $W_1 + W_2$, then

 $\dim(W_1 + W_2) = r + s + t = (r + t) + (r + s) - r = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$

Suppose $a \in W_1 + W_2$. Then a = b + c, for some $a \in W_1$ and $b \in W_2$. We can write

$$b = \alpha_1 u_1 + \dots + \alpha_r u_r + \beta_1 w_1 + \dots + \beta_t w_1$$

$$c = \gamma_1 u_1 + \dots + \gamma_r u_r + \delta_1 v_1 + \dots + \delta_s v_s$$

Adding we see that $W_1 + W_2$ is spanned by B.

Now suppose

$$\alpha_1 u_1 + \dots + \alpha_r u_r + \beta_1 w_1 + \dots + \beta_t w_t + \delta_1 v_1 + \dots + \delta_s v_s = \vec{0}. \qquad (*)$$

Then, $\alpha_1 u_1 + \cdots + \alpha_r u_r + \beta_1 w_1 + \cdots + \beta_t w_t = -\delta_1 v_1 - \cdots - \delta_s v_s$, so this vector belongs to $W_1 \cap W_2$. Therefore, we may write $-\delta_1 v_1 - \cdots - \delta_s v_s = \alpha'_1 u_1 + \cdots + \alpha'_r u_r$. Substituting into (*) we get

$$(\alpha_1 - \alpha'_1)u_1 + \dots + (\alpha_r - \alpha'_r)u_r + \beta_1 w_1 + \dots + \beta_t w_t = \vec{0}.$$

Since $u_1, \ldots, u_r, w_1, \ldots, w_t$ is a basis for W_1 , each $\beta_i = 0$. Using this in (*), we have

 $\alpha_1 u_1 + \dots + \alpha_r u_r + \delta_1 v_1 + \dots + \delta_s v_s = \vec{0}.$

Since these latter vectors are a basis for W_2 , all α_i, δ_j are 0, hence the set B is linearly independent, and thus a basis for $W_1 + W_2$.

2. For $W_1, W_2, W_3 \subseteq V$, we write $V = W_1 \oplus W_2 \oplus W_3$, as a direct sum, if every element in V can be written uniquely as a sum of elements from W_1, W_2, W_3 . Show that, in this case: (i) $V = W_1 + W_2 + W_3$ and (ii) $W_i \cap (W_i + W_k) = \vec{0}$, for $1 \leq i \neq j \neq k \leq 3$. (10 points)

Solution. By assumption, every vector in V is a sum of vectors from W_1, W_2, W_2 . Suppose $v \in W_i \cap (W_j + W_k)$. Then v = u + w, with $u \in W_j$ and $w \in W_k$. Thus, $(-v) + u + w = \vec{0}$, with each u, v, w coming from one of the given subspaces. On the other hand, $\vec{0} = \vec{0} + \vec{0} + \vec{0}$, with $\vec{0} \in W_1$, $\vec{0} \in W_2$, $\vec{0} \in W_3$. By uniqueness of sums, $v = \vec{0}, u = \vec{0}, w = \vec{0}$. In particular, $v = \vec{0}$, showing $W_i \cap (W_j + W_k) = \vec{0}$.